

7.0 Web Services Guide

© Copyright 2010 Sage Technologies Limited, publisher of this work. All rights reserved.

No part of this documentation may be copied, photocopied, reproduced, translated, microfilmed, or otherwise duplicated on
any medium without prior written consent of Sage Technologies Limited.

Use of the software programs described herein and this documentation is subject to the End User Licence Agreement
enclosed in the software package, or accepted during system sign-up.

Sage, and the Sage logo are registered trademarks or trademarks of The Sage Group PLC. All other marks are trademarks or
registered trademarks of their respective owners.

Contents

Chapter 1: Introduction to Web Services 1-1

General Overview of Web Service Technology 1-1

CRMWeb Services Capabilities 1-1

Chapter 2: Setting Up CRM Web Services 2-1

Prerequisites 2-1

Steps forWorking withWeb Services 2-1

Web Services User Setup 2-1

SpecifyingWeb Service Configuration Settings 2-1

Recommended Configuration Settings 2-3

Accessing theWSDL File 2-3

Chapter 3: Objects and Functions Overview 3-1

Manipulating Records 3-1

Functions 3-1

Objects 3-1

Chapter 4: List of Web Services Functions 4-1

Chapter 5: List of Web Services Objects 5-1

Abstract Objects 5-1

Standard Objects 5-2

Inserting and Updating Quote andOrder Items 5-2

Chapter 6: The CRM RecordType Object 6-1

Chapter 7: Selection Fields in Web Services 7-1

List of Selection Fields 7-1

Opportunity Selection Fields 7-2

Case Selection Fields 7-2

Address and Product Selection Fields 7-2

Using GetDropDownValues 7-2

Chapter 8: Sample SOAP Requests 8-1

Sample Soap Request for Logon 8-1

Sample Soap Request for Delete 8-2

Sample Soap Request for Update 8-2

Sample Soap Request for QueryEntity 8-3

Web Services Guide Contents – i

Contents

Sample Soap XMLRepresenting a Company 8-3

Contents – ii SageCRM.com

Chapter 1: Introduction to Web Services

Sage CRM's web service API (application programming interface) enables developers tomanipulate
CRM records remotely with SOAP (Simple Object Access Protocol) over HTTP using XML
(Extensible Markup Language). It is possible to access a CRM server or a hosted system from a
specified client machine (typically another server) in order to read, create, update, or delete records
for each exposed entity, for example, Companies, People, Opportunities, Cases, Quotes andOrders.

Please refer to List of Web Services Objects (page 5-1) for informationmore details on inserting and
updating Quote andOrder Item fields.
Themain steps involved in communicating with the Sage CRMWeb Services are as follows:

1. TheWSDL (Web Service Description Language) is generated on the CRM server.
2. The user then accesses theWSDL file from the client and prepares the request.
3. The client machine passes the request with its parameters to theWeb Service.
4. The web service processes the request and sends a response to the client.
5. The client receives the response synchronously, and it processes the data returned or it deals

with the error.

General Overview of Web Service Technology
WebServices represents a standardizedmethod for integratingWeb-based applications using XML,
SOAP, andWSDL via an Internet protocol backbone. Web service components work as follows:

l XML tags the data.
l SOAP transfers the data. For a detailed account of SOAP, please refer to

http://www.w3.org/TR/SOAP.
l WSDL describes the available services.

The technology allows organizations to exchange data without in-depth knowledge of each other's IT
systems behind the firewall. It does not provide users with a GUI, which is the case with traditional
client/server models. Instead, Web Services share business logic, data, and processes through a
programmatic interface across a network. Developers can add the web service to a GUI, such as a
Web page or an executable program, to provide users with the required functionality.
The technology makes it possible for different applications from different sources to communicate
with each other without time-consuming custom coding. Due to the fact that all communication is in
XML, Web Services do not limit the user to any one programming language.

CRMWeb Services Capabilities
In Sage CRM, the ability to manipulate records remotely affords the following capabilities:

l Changing Data. The ability to add, update and delete records in the CRM database.
l Integrate with third-party applications. Access to the Sage CRMWeb Services API enables

you to integrate third-party applications used within your organization, for example Accounting
packages or ERP (Enterprise Resource Planning) systems, with the Sage CRM server or
hosted system.

l Hosted Environments. As well as manipulating records on a standard CRM server, Sage
CRMWeb Services is compatible with a hosted environment. Consequently hosted
customers can leverage the technology and its capabilities.

Web Services Guide 1-1

http://www.w3.org/TR/SOAP

Chapter 2: Setting Up CRM Web Services

Prerequisites
To set upWeb Services, you will need to have the following installed on the server:

l CRMwith a standard license key
l MSXML 4 Service Pack 2 (can be downloaded fromMicrosoft website)

All up-to-date development environments that are compatible with Soap 1.1 are compatible with Sage
CRMWeb Services. Supported environments includeMicrosoft Visual Studio 2003 and later (C#, J#,
VB.NET) andMicrosoft Visual C# 2005 Express Edition.

Steps for Working with Web Services
The following steps are involved in working withWeb Services:

1. Setting up aWeb Services user on the server.
2. SpecifyingWeb Services configuration settings.
3. Accessing theWSDL file.
4. Preparing the request and submitting it toWeb Services.
5. Handling the response—returned values or error message.

Steps 1 to 2 are described below. For information on preparing the request and handling the response
seeObjects and Functions Overview (page 3-1) and theWeb Services Examples.

Web Services User Setup
BeforeWeb Services can be accessed, a user account needs to be set up forWeb Services on the
server.
To set up a user forWeb Services:

1. Select Administration |Users |Users and find the user who you want to be able to access
Web Services.

2. Select the hypertext link for the user and select theChange action button.
3. Scroll down to the Security Profile panel, set theAllow Web Service Access field to True.
4. Select theSave button.

Note: Only one web service user can log on with the same ID at any given time. If a user
tries to log on as another application, an error will be displayed informing the user that
they should first log out. However, it is possible to log on to the desktop or from a device
with the same ID while a web service application is running.

Note: The Field Level Security feature affects which fields can be accessed or updated
using web servicemethods. So, for example, if a user is denied read access to a field by
field level security, methods called by a web service session using that same user's
login details cannot return, update, or delete that field's values. For more information on
Field Level Security, refer to the System Administrator Guide.

Specifying Web Service Configuration Settings
To access web service configuration settings select Administration | System |Web Services.

Web Services Guide 2-1

Chapter 2

The table below explains the fields on theWeb Services settings page.

Field Description

Maximum
Number
Of
Records
To Return

Themaximum number of records you want Web Services to be able to
return at one time. This is used in conjunction with the query and
queryrecordmethods. The number you enter here is the number of records
that will be returned in any one batch in response to a query. As each batch
is returned, you will be prompted to call the next batch, until all of the
records matching the query have been returned. If this field is set to 0, all
records matching the query will be returned in a single batch.

Maximum
Size Of
Request

Themaximum number of characters you want users to be able to send to
Web Services.

Make
WSDL
Available
To All

When set to Yes, you can find the URL at which to view theWSDL file by
going toMain Menu |System Help |Account Update |Web Service
Connection String.

Enable
Web
Services

Set to Yes to enable theWeb Services functionality. Set to No to disable
Web Services. To enable or disableWeb Services for an individual Table
or Entity go toAdministration |Customization | [Entity/Table Name] |
External Access and set theWeb Services field to Yes to enable or No to
disable.

Dropdown
Fields As
Strings In
WSDL
File

Default is Yes. Drop down fields are displayed in theWSDL as enumerated
types, for example comp_status as an enumeration with the drop down
values in it. Please refer to Objects and Functions for more details.When
set to Yes, makes the enumerated types "Strings". This is the
recommended setting. This means that, for example, within Company the
field comp_status now has a type of "String".

Send And
Return All
Dates
And
Times In
Universal
Times

When this is selected, all dates coming from the server will be set to
universal time. Also, all dates coming to the web server will be offset from
universal time. This is primarily important for migrations to the hosting
service from different time zones.

Accept
Web
Request
From IP
Address

Specify the unique IP address that you want theWSDL file to be
accessible from. When you do this, the "MakeWeb Services Available To
All" field should be set to No.

Force
Web
Service
LogOn

If the connection between the web service client and the service is
unexpectedly broken, that client remains logged onto the server hosting the
service. This means that a new instance of the client will be blocked from
logging on to the server. However, if you set the "ForceWebservice Log
On" setting to Yes, the old instance of the client is automatically logged out

2-2 SageCRM.com

Chapter 2: Setting UpCRMWeb Services

Field Description

when a new instance attempts to log on. By forcing new log ons, this field
prevents users from being "locked out" of a web service following a failed
connection or unsuccessful log out.

Recommended Configuration Settings
These are the recommended settings to allow your client to access theWeb Service during
development:

1. Set theEnable Web Services field toYes.
2. Select Yes from theMake WSDL To All field.
3. Set the Force Webservice Log On field toYes.

After you have finished testing the web service client, it is recommended that you switch the
MakeWSDL To All setting back toNo to bolster security.

Accessing the WSDL File
As is the case with typical SOAPWeb Services, CRM provides aWeb Services description
language file called aWSDL file.
To access this file from the client application, open the CRMWebService.WSDL file at your install
address.
On SageCRM.com, you can find the URL to view theWSDL file by going toMain Menu |System
Help |Account Update |Web Service Connection String. The URL will look something like this:
https://[region].sagecrm.com/[username1234]/eware.dll/webservices/CRMwebservice.wsdl

The CRMWSDL file describes all the APIs that CRM exposes, as well all the XML types that the
APIs expect. The file also describes the server and location where those specific services can be
found. Once the client has read and parsed theWSDL file, it can call the APIs in the sameway as
any typical function call. Since this data is passed and returned as XML, data can be easily
interpreted andmanipulated by the client.
For example, if you are usingMicrosoft Visual Studio to create a client application, your Visual Studio
project should contain aWebReference to e.g.
https://[region].sagecrm.com/[username1234]/eware.dll/webservices/CRMwebservice.wsdl.
When you add the reference in Visual Studio, themain pane lists themethods available from the web
service.
If you name the serviceCRMWebServices then a new folder called CRMWebServices, containing
the files webservice.discomap and webservice.wsdl, is added to your project. The "web service
proxy"—aC# version of the wsdl file that handles the dispatch of data in SOAP format to the web
service—is created automatically.

Note: In Visual Studio 2008, to add aWebReference youmust select Add Service
Reference |Advanced |Add Web Reference.

Web Services Guide 2-3

Chapter 3: Objects and Functions Overview

Manipulating Records
Before you start working with CRMWeb Services, you need to be familiar with all of the Functions
that you can invoke tomanipulate records, as well as the Objects (on which the functions are
invoked) that are exposed in the API.

Functions
Functions are actions invoked from the client machine to perform certain tasks, such as adding,
updating, or deleting information, on the server. Sage CRM functions are synchronous requests, and
they are committed automatically. Once committed, Sage CRMWeb Services handles the request
and returns a response. The client application then handles the response accordingly.

Note: All inserts should typically be performed on an entity basis. However, you can
update a company (or person) along with address, phone, and e-mail information. This is
to facilitate integration. In many systems, a single contact record represents company,
person, phone, e-mail, and address information.

See List of Web Services Functions (page 4-1) for a full list.

Objects
Objects are programmatic representations of data in the system. In Sage CRM, Objects represent
main entities such as companies and people, as well as secondary entities such as addresses and
products. Data is manipulated when the web service API interacts with Object properties, which
represent fields in the entities.

See List of Web Services Objects (page 5-1) for a full list, and see also The CRMRecordTypeObject
(page 6-1) and Selection Fields inWeb Services (page 7-1).

Web Services Guide 3-1

Chapter 4: List of Web Services Functions

All of the following Objects exposed are defined in theWSDL file.

Function Description

logon Logs onto the server and begins a session.

logoff Logs off the server and terminates the session.

query Executes a query on a specified Object based on a where clause
and returns a record or record set that satisfies the query.

Returns results in batches (the size of which is set in the
Maximum Number Of Records To Return field at
Administration |System |Web Services).

Each batch is accompanied by a flag calledMore. If More is True,
then there aremore records waiting on the server for that query.
Call Next to get the next batch of data. If anything other than Next
is called, the query is closed.

next Will return the next batch of records matching a query. Each batch
is accompanied by a flag calledMore. While More is True, you
can continue to call Next until all batches have been returned (i.e.
until More is False).

queryentity Returns a record if you supply anObject (for example Company)
and an id. For example, queryentity(company, 42)

queryid Returns an object of type aisid (see List of Web Services Objects
(page 5-1)). Query the database with aWhere clause, and a date
and a number of IDs are returned, along with a series of flags on
each to denote whether that record was created, updated or
deleted since that date. This is very useful for data
synchronization.

queryidnodate Returns an object of type aisid (see List of Web Services Objects
(page 5-1)). Query the database with aWhere clause. This is
useful where you need, for example, a set of company IDs but you
do not want the overhead of getting all of the company data.

getmetadata When you pass in a table name, this returns a list of CRM field
types to providemetadata (for example fieldname, type) about the
requested table.

getdropdownvalues When you pass in a table, this returns the list of the drop-down
fields in that table and the list of values that CRM expects for that
field. This is important because CRM expects a given set of
values for drop-down fields, so you need to be able to get these
values programmatically.

Web Services Guide 4-1

Chapter 4

Function Description

add Adds records or lists of records to a specified Object (for example
Company). For example, add("company", NewCompany1, New
Company2, New Company3).

addresource Adds a user as a resource. This user is not a fully enabled user.
The functionality exists purely to facilitate datamigration.

update Updates records or lists of records for a specified Object, for
example Company.

altercolumnwidth Used to resize a columnwidth to ensure compatibility with third-
party databases, for example ACT!.

delete Deleted records or lists of records for a specified Object, for
example Company.

Note that you cannot delete records from the
following tables, as they contain historical data:
newproduct, uomfamily, productfamily, pricing,
pricinglist.

addrecord Same as the add function except it has a different signature and it
uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 6-1).

queryrecord Same as the query function except it has a different signature and
it uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 6-1).

nextqueryrecord Will return the next batch of records matching a queryrecord. Each
batch is accompanied by a flag calledMore. While More is True,
you can continue to call Next until all batches have been returned
(i.e. until More is False).

updaterecord Same as the update function except it has a different signature
and it uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 6-1).

getallmetadata Returns a list of fields associated with all tables along with some
type information.

getversionstring Returns the version of CRM. For example, Version 6.2.

4-2 SageCRM.com

Chapter 5: List of Web Services Objects

The following Objects are representative of CRM entities (main and secondary). If any custom
entities are added to the CRM system, these entities are also available. Due to the fact that the
WSDL is generated dynamically, any customizations made to the system—such as adding a new
entity—are picked up each time theWSDL is refreshed at the client side.

Abstract Objects

Object Name Description

ewarebase
abstract

This is an abstract declaration from which all of the other CRM objects
inherit.

idbase
abstract

This is an abstract declaration from which all ID types inherit.

ewarebaselist This represents a list of the abstract objects above.

crmrecordtype An enumeration that represents the types of a CRM field, i.e. string,
datetime, integer, decimal.

The valuemultiselectfield denotes a nested array of strings that
represent the values of amulti-select field. The last option is
crmrecord. This denotes a field type that contains other fields.See The
CRMRecordTypeObject (page 6-1) for more.

crmrecord Contains an entity name and a list of objects of type recordfield that
represent one record in the CRM database.

aisid Contains the ID of the record, the created and updated date, and a flag
to say whether that record was added,updated or deleted since the
token that was passed to queryid

multiselectfield This type represents amulti select field from CRM. It contains a field
name and an array of strings representing the values of the field in
CRM. Note that these values are translations, as with the other fields.

recordfield This represents a field in a database record. It has a name value and a
type of crmrecordtype. It can also represent a nested structure. For
example, the name of the recordfield within a company crmrecord
could be person. The type would be crmrecord and the record property
would contain a list of crmrecords – one for each person in the
company.

Web Services Guide 5-1

Chapter 5

Standard Objects

Object Name Description

company This Object represents the Company entity in CRM.

person This Object represents the Person entity in CRM.

lead This Object represents the Lead entity in CRM.

communication This Object represents the Communication entity in CRM.

opportunity This Object represents the Opportunity entity in CRM.

cases This Object represents the Cases entity in CRM.

users This Object represents the Users entity in CRM.

quotes This Object represents the Quotes entity in CRM.

orders This Object represents the Orders entity in CRM.

quoteitem This Object represents the quote lineitems entity in CRM.

orderitem This Object represents the order lineitems entity in CRM.

opportunityitem This Object represents the Opportunity Item entity in CRM.

currency This Object represents the Currency entity in CRM.

address This Object represents the Address entity in CRM.

phone This Object represents the Phone entity in CRM.

email This Object represents the Email entity in CRM.

newproduct This Object represents the New Product entity in CRM.

uom This Object represents the Unit of Measure entity in CRM.

uomfamily This Object represents the Unit of Measure Family entity in CRM.

pricing This Object represents the Pricing entity in CRM.

pricinglist This Object represents the Pricing List entity in CRM.

productfamily This Object represents the Product Family entity in CRM.

Inserting and Updating Quote and Order Items
When inserting and updating fields for quote and order items, note that different line item types require
certain fields. The web service will create an exception if they are not found.

When inserting a new standard line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l productid

5-2 SageCRM.com

Chapter 5: List of Web Services Objects

l uomid
l quantity
l quotedprice

When inserting a new free text line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l description
l quantity
l quotedprice

When inserting a new comment line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l description

When updating a standard line item, the following fields require a value:

l quantity
l quotedprice
l uomid

When updating a free text line item, the following fields require a value:

l description
l quantity

When updating a comment line item, the following fields require a value:

l description
The following two fields are can not be updated, and will create an exception:

l linetype
l orderquoteid

In addition, certain fields are calculated or overridden by CRM in the web service code, the values
that the user passes into them will be ignored. These fields are:

l quotedpricetotal
l listprice
l discount
l discountsum

Web Services Guide 5-3

Chapter 6: The CRM RecordType Object

The crmrecordtype object (with its associated add, update, and delete functions) provides a dynamic
and flexible programming environment. Instead of querying an entity (for example, a company) and
getting back a strongly typed (company) sobject, using the flexibility afforded by the crmrecordtype
object, it is possible to query an entity and get back a list of fields that you can iterate through. This
means that it is possible to specify which fields you want to get back in your query.

The ability to iterate through records provides programmers with a powerful and flexible interface. It
allows for the dynamic addition of fields to the web services entities, and it removes the need for
strongly typed objects in client applications. Code samples should be followed closely when
performing these tasks.
The following is a query example that specifies a field list and an entity name, a where clause and an
order by. Note that if you enter an * or leave the field list blank you will get all of the fields back.

Private static void CallQueryRecordOnCompanyEntity()

{

String companyid = ReadUserInput("Please enter a company name: ");

Queryrecordresult aresult = Binding.queryrecord("comp_companyid,address","comp_

name='compo1'","company","comp_companyid");

}

Web Services Guide 6-1

Chapter 7: Selection Fields in Web Services

If you have drop-down fields as strings, these fields will not appear in theWSDL. As strings are the
default option, these fields will not appear in a standard setup.

The tables below list the CRM selection fields. In theWSDL file, an enumerated type for each field
that contains values represents these values. There are several fields like this for each entity.

Note: Enumerated values are returned in the default system language.

<s:simpleType name="case_problemtype">

<s:restriction base="s:string">

<s:enumeration value="Additional Software Required" />

<s:enumeration value="Software Bug" />

<s:enumeration value="Setup/Installation" />

<s:enumeration value="Customer knowledge" />

</s:restriction>

</s:simpleType>

List of Selection Fields

Company Selection Fields

l comp_employees
l comp_indcode
l comp_mailrestriction
l comp_revenue
l comp_sector
l comp_source
l comp_status
l comp_territory
l comp_type

Person Selection Fields

l pers_gender
l pers_salutation
l pers_source
l pers_status
l pers_territory
l pers_titlecode

Lead Selection Fields

l lead_decisiontimeframe
l lead_priority
l lead_rating
l lead_source

Web Services Guide 7-1

Chapter 7

l lead_stage
l lead_status

Communication Selection Fields

l comm_action
l comm_hasattachments
l comm_notifydelta
l comm_outcome
l comm_priority
l comm_status
l comm_type

Opportunity Selection Fields

l oppo_priority
l oppo_product
l oppo_scenario
l oppo_source
l oppo_stage
l oppo_status
l oppo_type

Case Selection Fields

l case_foundver
l case_problemtype
l case_productarea
l case_solutiontype
l case_source
l case_stage
l case_status
l case_targetver

Address and Product Selection Fields

l addr_country
l prod_uomcategory

Using GetDropDownValues
Use the getdropdownvalues function. See List of Web Services Functions (page 4-1) to get the list of
the drop-down fields in a table and the list of values that CRM expects for that field.

This is an example in C# of a function to populate a ComboBox with selection values from a given
field.

private void LoadDropDowns(string entity, string fieldname, ComboBox controlname,

WebService WS)

{

7-2 SageCRM.com

Chapter 7: Selection Fields inWeb Services

dropdownvalues[] DropDowns;

DropDowns = WS.getdropdownvalues(entity);

controlname.Items.Clear();

for (int i = 0; i < DropDowns.Length; i++)

{

if (DropDowns[i].fieldname == fieldname)

{

for (int x = 0; x < DropDowns[i].records.Length; x++)

{

controlname.Items.Add(DropDowns[i].records[x].ToString());

}

}

}

controlname.SelectedIndex = 0;

}

To use the function to display the comp_sector selection values in a ComboBox called 'comboSector'
(where the web service object is called oWebService):

LoadDropDowns("company", "sector", comboSector, oWebService);

Web Services Guide 7-3

Chapter 8: Sample SOAP Requests

The following sections provide a number of sample Soap requests. Some of the request examples are
in C# and some are in XML.

Sample Soap Request for Logon
This C# example illustrates how to log onto the server:

//An Instance of the web service.

private static WebService binding = null;

//Persistent for the duration of the program, maintain the logon results

private static logonresult SID = null;

private static void LogonToCRMSystem()

{

try

{

SID = binding.logon("admin", "");

binding.SessionHeaderValue = new SessionHeader();

binding.SessionHeaderValue.sessionId = SID.sessionid; //Persistent SID

return true;

}

catch (SoapException e)

{

Write(e.Message);

}

catch (Exception e)

{

Write(e.Message + "\n" + e.StackTrace);

}

}

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<logon xmlns="http://tempuri.org/type">

<username>admin</username>

<password />

</logon>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Logoff
This XML example illustrates how to log off:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

Web Services Guide 8-1

Chapter 8

<sessionId>57240080053832</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<logoff xmlns="http://tempuri.org/type">

<sessionId>57240080053832</sessionId>

</logoff>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Delete
This C# example shows how to delete a company whose ID is 66:

ewarebase[] idList = new ewarebase[1];

companyid aCompanyId = new companyid();

aCompanyId.companyid1 = 66; //66 is id of company to delete

idList[0] = aCompanyId;

deleteresult aResult = binding.delete("company",idList);

if(aResult.deletesuccess == true)

Console.WriteLine("Number deleted successfully : " + aResult.numberdeleted);

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>127169567253830</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<delete xmlns="http://tempuri.org/type">

<entityname>company</entityname>

<records xsi:type="companyid">

<companyid>66</companyid>

</records>

</delete>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Update
This C# example shows how to change the company name for a company whose ID is 66:

private static void UpdateACompany()

{

String idString = "66";

String newName = "newName";

ewarebase[] companyList = new ewarebase[1];//can update a number of companies

company aCompany = new company();

aCompany.companyid = Convert.ToInt16(idString);

aCompany.companyidSpecified = true;

aCompany.name = newName;

companyList[0] = aCompany;

8-2 SageCRM.com

Chapter 8: Sample SOAP Requests

updateresult aresult = binding.update("company", companyList);

if(aresult.updatesuccess == true)

{}

else

{}

}

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>12663708753831</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<update xmlns="http://tempuri.org/type">

<entityname>company</entityname>

<records xsi:type="company">

<people xsi:nil="true" />

<address xsi:nil="true" />

<email xsi:nil="true" />

<phone xsi:nil="true" />

<companyid>933</companyid>

<name>Design Wrong Inc</name>

</records>

</update>

</soap:Body>

</soap:Envelope>

Sample Soap Request for QueryEntity
This example queries a company record whose ID is 66:

company aCompany = (company) binding.queryentity(66, "company").records;

Sample Soap XML Representing a Company
The following is the XML representing a company whose ID is 65:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<SOAP-ENV:Envelope SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<queryentityresponse xmlns="http://tempuri.org/type">

<result>

<records xsi:type="typens:company" mlns:typens="http://tempuri.org/type">

<typens:companyid>65</typens:companyid>

<typens:primarypersonid>79</typens:primarypersonid>

<typens:primaryaddressid>77</typens:primaryaddressid>

<typens:primaryuserid>9</typens:primaryuserid>

<typens:name>AFN Interactive</typens:name>

<typens:website>http://www.AFNInteractive.co.uk</typens:website>

<typens:createdby>1</typens:createdby>

Web Services Guide 8-3

Chapter 8

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

<typens:librarydir>A\AFN Interactive(65)</typens:librarydir>

<typens:secterr>-1845493753</typens:secterr>

<email>

<entityname>email</entityname>

<records xsi:type="typens:email" xmlns:typens="http://tempuri.org/type">

<typens:emailid>120</typens:emailid>

<typens:companyid>65</typens:companyid>

<typens:type>Sales</typens:type>

<typens:emailaddress>sales@AFNInteractive.co.uk</typens:emailaddress>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</email>

<phone>

<entityname>phone</entityname>

<records xsi:type="typens:phone" xmlns:typens="http://tempuri.org/type">

<typens:phoneid>211</typens:phoneid>

<typens:companyid>65</typens:companyid>

<typens:type>Business</typens:type>

<typens:countrycode>44</typens:countrycode>

<typens:areacode>208</typens:areacode>

<typens:number>848 1051</typens:number>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</phone>

<address>

<entityname>address</entityname>

<records xsi:type="typens:address" xmlns:typens="http://tempuri.org/type">

<typens:addressid>77</typens:addressid>

<typens:address1>Greenside House</typens:address1>

<typens:address2>50 Station Road</typens:address2>

<typens:address3>Wood Grn</typens:address3>

<typens:city>LONDON</typens:city>

<typens:postcode>N22 7TP</typens:postcode>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</address>

</records>

</result>

</queryentityresponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8-4 SageCRM.com

CRM Document Version Code HOS-WES-ENG-701-1.0

	Chapter 1: Introduction to Web Services
	General Overview of Web Service Technology
	CRM Web Services Capabilities

	Chapter 2: Setting Up CRM Web Services
	Prerequisites
	Steps for Working with Web Services
	Web Services User Setup
	Specifying Web Service Configuration Settings
	Recommended Configuration Settings
	Accessing the WSDL File

	Chapter 3: Objects and Functions Overview
	Manipulating Records
	Functions
	Objects

	Chapter 4: List of Web Services Functions
	Chapter 5: List of Web Services Objects
	Abstract Objects
	Standard Objects
	Inserting and Updating Quote and Order Items

	Chapter 6: The CRM RecordType Object
	Chapter 7: Selection Fields in Web Services
	List of Selection Fields
	Opportunity Selection Fields
	Case Selection Fields
	Address and Product Selection Fields
	Using GetDropDownValues

	Chapter 8: Sample SOAP Requests
	Sample Soap Request for Logon
	Sample Soap Request for Delete
	Sample Soap Request for Update
	Sample Soap Request for QueryEntity
	Sample Soap XML Representing a Company

